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of  e the values of  2 deviate only slightly from those for the 
Darcy case. As e increases, these curves approach the line 
1 + e2 = 0 which corresponds to singular points of  equations 
(11) and (12). This critical line arises because the time- 
dependent term introduced into the Darcy equations 
causes the term with the highest order spatial derivative 
to have a coefficient which varies and which is zero on the 
critical line if 2 is real. In this sense the present problem is 
similar to the inviscid Orr-Sommerfeld problem. Here, how- 
ever, one has no need to resort to a critical layer analysis 
as 2 becomes complex in order to pass 'a round '  the critical 
line. 

On fixing S and ~, there are only two possible ways for 2 
(for the most  unstable mode) to evolve as e increases : either 
2 asymptotes to the curve e2 = negative constant,  or two 
stationary modes (Im ( 2 ) =  0) coalesce to form a pair of  
travelling modes (Im (2) # 0), which can then pass around 
the critical line, followed by a decoupling of  the modes which 
both eventually asymptote to 2 = constant.  The former 
possibility is not  evident in Fig. 3 and therefore, for a clearer 
representation, one rescales the ordinate by plotting 
- e  Re (2). On using a log-log scaling, both asymptotic forms 
are shown as straight lines, the former having unit  slope and 
the latter being horizontal as is the critical line. These may  
be seen clearly in Fig. 4. 

In Fig. 4 the decrement spectrum is displayed for the three 
cases, c~ = 0.25n, S = 10, 50 and 200. These figures are typical 
of  all those calculated for different values of  ~ and S. It is a 
universal feature of  the results that  when e is small the effect 
o f  increasing either ~, S or both is to decrease Re (2) still 
further, at least for the most  unstable mode ; this is similar 
to the Darcy case as shown in Fig. 2. As e increases the slope 
of  In ( - e  Re (2)) for the most  unstable mode usually remains 
positive and Re (2) is always negative. 

To conclude, one has  demonstrated that non-zero values 
of  the inverse P rand tPDarcy  number  do not  induce insta- 
bilities of  the form of  rolls o f  any orientation. This is also 
true for unphysically large values of  e. The question which 
immediately arises is to ask why the results are at variance 
with those of  Georgiadis and Cat ton [6], who gave an 
expression for the critical Grashof  number  (Grcrit ; equivalent 
to our critical Rayleigh number)  for instability. A careful 
examination of  that  expression and the preceding analysis 
shows that the defining integrals for Grczit contain the 

Grashof  number  itself, and therefore their expression de- 
fines the critical Grashof  number  implicitly. The results 
indicate that such a value does not  exist and that the flow is 
linearly stable. 
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1. I N T R O D U C T I O N  

WITH THE advent o f  sustained space flight, studies related 
to chemical processes in a micro-gravity environment have 
become important.  At low gravity fluid mot ion is often 
governed by forces which are often negligible in the earth 's  
gravitational field. One of  these forces which is expected 
to be important  in a micro-gravity environment is surface 
tension. When a gradient in surface tension exists at the 
interface between two fluid phases, a surface tension driven 

(Marangoni)  flow field may result. The surface tension 
between two fluids is a function of  the temperature and the 
concentration level of  any solute present at the fluid interface. 
Thus,  in the presence of  a gradient in the solute concentration 
or the temperature near a fluid interface, surface tension 
driven flows may  be present. Surface tension (Marangoni) 
effects on droplets have been studied in several works includ- 
ing: Levan [1], Thompson  et al. [2], and Rivkind and 
Sigovtsev [3]. 

The intent of  this work is to demonstrate  that irradiant 



Technical Notes 1535 

N O M E N C L A T U R E  

ai, ai~ coefficients, equations (6) and (10) 
b~, b~, coefficients, equations (7) and (11) 
C,, ll/2(cos 0) Gegenbauer polynomials (see the 

appendix of  Levan [1]) 

X ratio of  dynamic viscosities, Itt/It2. 

Greek symbols 

0 k thermal conductivity 
K ratio of  thermal conductivities, k , / k 2  It a 
q" thermal radiation flux T 
r dimensionless radius, R/Ro  
R, R 0 radius and droplet radius, respectively ~0 
T temperature Subscripts 
u, v dimensionless radial and tangential velocities, 1 

u = U/U~ 2 
U~ bulk droplet velocity, equation (20) oo 

absorptivity of  the droplet surface 
tangential coordinate 
dynamic viscosity 
surface tension 
dimensionless temperature, equation (1) 
dimensionless stream function, equations (23). 

droplet phase 
continuous phase 
free stream. 

energy may be exploited to induce droplet motion in a micro- 
gravity environment. The analysis considers only the special 
case of  an opaque droplet. This restriction is made to facili- 
tate a straightforward closed form solution for the resulting 
flow field, in spite of  this limitation, it is hoped that this 
work will enhance our understanding of  how surface tension 
effects can be exploited in micro-gravity environments. 

If the surface of  the droplet acts as a diffuse gray body to 
a uniform irradiant energy source, the heat generation rate at 
the droplet surface will vary with the cosine of  the tangential 
angle (Fig. 1). The resulting non-uniform heat generation 
rate at the droplet surface will create a temperature gradient 
near the droplet surface. This temperature gradient will in 
turn create a gradient in the surface tension along the droplet 
surface. In the absence of other forces such as gravity, the 
droplet will migrate slowly in a direction parallel to the 
incident radiation (generally towards the radiant energy 
source). It is the intent of this work to analytically estimate 
the flow field near such a droplet. 

2. ANALYSIS 

As with most analyses, several assumptions must be made 
to obtain a closed form solution. The continuous phase is 
assumed to be transparent to thermal radiation, while the 
droplet phase is assumed to be opaque to thermal radiation. 

This will result in generation of  heat at the droplet surface 
that varies with the tangential angle. Since the surface tension 
is a function of  the temperature, this non-uniform generation 
of  heat at the droplet surface will create a gradient in the 
surface tension. For this investigation the surface tension is 
assumed to be a linear function of  temperature only, and not 
a function of  the concentration of  any solutes present. 

Surface tension driven flows near small droplets tend to 
be slow enough to justify the use of  the creeping flow assump- 
tions. For  many fluids the Prandtl number is of the order of  
1-100; thus for slowly moving droplets it is reasonable to 
assume that the heat transfer near the droplet will be due to 
conduction dominated heat transfer. 

Specifically, the following assumptions are made in this 
analysis : 

(1) the droplet is spherical and isolated in a quiescent fluid 
medium ; 

(2) the surface tension is a linear function of  temperature 
only; 

(3) constant fluid properties are assumed (except surface 
tension) ; 

(4) the continuous phase is transparent to radiation ; 
(5) the droplet surface acts as a gray body ; 
(6) the incident irradiation is in the form of  uniform par- 

allel rays ; 
(7) the flow is axisymmetric ; 
(8) both the Reynolds number, and the product of the 
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FIG. I. Schematic of problem. 
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Reynolds number  and the Prandtl  number  are small (i.e. 
Re << 1 and RePr  << 1); 

(9) a steady-state solution is sought. 

The dimensionless equation for conduction in spherical 
coordinates is 

0=T~ 2 0 T ~ +  1 0 (s in  0 ~_O2OJ) = 0 (1) 
Or ~ + r ~- r  r = sin 0 00 

where K = k ~ / k 2  is the ratio of thermal conductivities, 
r = R/Ro the dimensionless radius, and 
T = k 2 ( T -  T~o)/q"ctRo the dimensionless temperature. The 
boundary conditions imposed on equation (1) are 

T l ( r  = 1,0) = T2(r = 1,0) (2) 

_ KOT I OT 2 
Or + ~ - r  + c ° s 0 = 0 '  0 < 0 < ~ / 2 ,  r = l  (3a) 

_ K O T t  0T2 
Or + - ~ - r  = 0 '  n / 2 < 0 < T z ,  r = l  (3b) 

0T~ 
0--0- = 0, 0 = 0 , ~  (4) 

lira T2(r, 0) = 0. (5) 

Equation (1) with boundary conditions (2)-(5) is solved 
by introducing the following series : 

T,  = ~ ~ aiarJPt(cosO), 0 < r  < 1 (6) 
iffi0 j ~ - m  

T2 = ~ ~ bijrJPi(cosO), r >  1 (7) 
i = 0  j f - - a o  

where P~(cos 0) is the Legendre polynomial of order i, and 
a~a and b~.: are coefficients which are to be determined. 

With the use of  certain properties of the Legendre poly- 
nomials [4], equation (1) becomes 

a~, [j  ( j  - 1) + 2j - i( i+ 1)] = 0 (8) 

bta [J ( j  - I) + 2j - i( i+ 1)] = 0. (9) 

Since the temperature at the droplet center is finite, only non- 
negative values of j have finite coefficients in equation (6) ; 
similarly (by equation (5)), only negative values of  j have 
non-zero coefficients in equation (7). In addition, for a given 
value of  i only two values for j will satisfy equations (8) and 
(9). Thus the series in equations (6) and (7) reduce to 

TI = ~'. a:~Pt(cosO), with at = at.t (10) 
/ = 0  

c~ 

T2 = ~ birT(!+l)pi(cosO), withbt  = bi.-(t+]). ( I I )  
t = 0  

Equation (2) is thus reduced to 

ai = bt (12) 

and equation (3) results in 

(2i÷ 1) fl  
a , =  [ ( K + I ) i + I ]  -~ 2 J0 Pt(x)P, (x)dx .  (13) 

Coefficients at may then be shown to be 

a0 = 1/4 (14) 

a~ = 1/[2(K+2)1 (15) 

at = (--  I) v-2)/2 (2i+ 1) 
2[(K+ 1)i+ l ] ( i+  2)(i-- l) 

x ~ (even, i > 1) 

a t = 0  (odd, i > 2 ) .  (16) 

Thus, the temperature along the fluid interface is given by 

T(r  = 1, 0) = ~ atPt(cos 0) (17) 
t = 0  

q" ocRo 
T(R = Ro, O) = T~ + - -  ~ a,e,(cos 0). (18) 

k2 i=o 

If  the surface tension is assumed to be a linear function of 
the temperature, it follows that  the surface tension (a) along 
the interface is given by 

O a q"ctR o 
a = ff~ q- ~ -~ ~ ~ aiPi(cosO). (19) 

2 i = 0  

The flow field which results from this gradient in the sur- 
face tension may be obtained from equations (12)-(22) of 
Levan [1]. In the analysis of Levan [1], the equations of 
motion are solved for the special case of axisymmetric flow 
about  a droplet with a variable interfacial surface tension. 
The resulting flow field is presented by Levan as an infinite 
series of Gegenbauer functions (see the appendix of Levan 
[1]), with corresponding radial functions. The flow field for 
the present problem may be readily obtained from Levan's 
work using the surface tension profile given by 
equation (19) of the present work. 

From equations (18)-(22) of Levan the bulk velocity of 
the droplet due to surface tension effects may be estimated 

~ =  1.0 

S 

FIG. 2. Streamline contours : X = 1, K = 1. 
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to be 

&r q"ctRo 1 1 
Uo~ - &T kz 3U2 ( K + 2 ) ( 2 + 3 X )  (20) 

where #z is the dynamic viscosity of  the continuous phase, 
and X is the ratio of  viscosities (droplet to continuous 
phase). The stream function values (made dimensionless by 
U~ R 02) are obtained from equations (12) and (13) of  Levan 

~, = ~43(r2-r4)sin20 + ~ 3n(n--1)(2+ 3X)(K+2) 
.= 3 2 ( 2 n -  I)(1 + X) 
(odd) 

xa._l(r2+n--r~)C~l/2(cosO) (21) 

sin 2 0 3n(n- 1)(2+ 3X)(K+2)  
~2 = ( r 2 - - r - l ) T " F  n=3 ~" 2(2n-- 1)(1 + X )  

(odd) 

xa._l(r 3 "--rl-")Cyl/Z(cosO) (22) 

with 

U = r2 sin 0 00' v = r sin 0 dr" (23) 

3. D ISCUSSION 

The bulk droplet velocity predicted by equation (20) is 
much smaller than that which would be significant in most 
buoyancy driven flows in the earth's gravitational field. How- 
ever, surface tension driven velocities could be significant in 
a micro-gravity environment. The flow lines inside and near 

such a droplet are illustrated in Fig. 2, for the special case 
where the ratio of  viscosities and thermal conductivities are 
unity (i.e. X = 1, K = I). 

Perhaps the most restrictive of  the assumptions made in 
the preceding analysis is assumption (5), the assumption 
that the droplet surface acts as a gray body to the incident 
irradiant energy. Most  droplets will be semi-transparent to 
irradiant energy in the visible range. Thus the preceding 
analysis is strictly valid for only a few systems. However, if 
the droplet absorbs a significant amount of  the incident 
irradiant energy, the droplet will have a non-uniform tem- 
perature profile which can induce droplet motion resulting 
from gradients in the interfacial surface tension. The bulk 
droplet velocity for such a semi-transparent droplet is 
expected to be smaller, yet qualitatively similar to that pre- 
dicted by equation (20). 
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INTRODUCTION 

A LARGE number of  view factors between a variety of surfaces 
has been evaluated using different numerical and analytical 
methods [1]. A close examination of  the literature reveals 
that little work has been done on the view factors between 
axisymmetric bodies and plane surfaces. This note develops 
a general formulation for evaluating the view factors between 
axisymmetric bodies and plane surfaces perpendicular to the 
axis of  symmetry. 

F O R M U L A T I O N  

Consider the configuration shown in Fig. 1, consisting of  
an axisymmetric body and a plane surface perpendicular to 
the axis o f  symmetry. The view factor from differential areas 
to most commonly used axisymmetric bodies are known, e.g. 
the view factors from a differential area to a disk [2], a 

cylinder [3], a cone [4, 5], a sphere [6, 7] and a spherical 
segment [8]. 

A differential ring sector can be generated by rotating the 
differential area about the axis of  symmetry as shown in Fig. 
1. Note that the angle of  rotation is q~. Thus, the view factor 
from the axisymmetric body to t h e  planar surface can be 
determined by integrating the view factor from the axisym- 
metric body to the differential ring over the area of  the planar 
surface 

a 

FAx-A = dFAx a, (1) 
i 

where 

d F . o . .  dA/ddp 
dFA¢ ~, ( J ~  = = acp ¢P aA-Ax Axx (2) 


